Atmosphere Investigation

A GLOBE® Learning Investigation

Atmosphere Investigation at a Glance

Protocols

Daily measurements within one hour of local solar noon:

precipitation (rain or snow) including precipitation pH

maximum and minimum temperature for the last 24 hours

(if using a Digital Multi-Day Max/Min thermometer this can be read at anytime of day)

At least one measurement per day:

cloud cover and type and contrail cover and type aerosols water vapor relative humidity snow pack current temperature surface temperature ozone

Suggested Sequence of Activities

- Read the *Introduction*, especially the sections *What Measurements Are Taken* and *Getting Started*.
- Read the brief description of the learning activities at the beginning of the *Learning Activities* section.
- Review the protocols and plan which measurements your students will take; feel free to start with an easily sustained level of effort and then expand.
- Order any new or replacement instruments required.
- Cloud measurements are the easiest place to start and are required for several other protocols; do these activities with your students before beginning cloud observations:

Observing, Describing, and Identifying Clouds

Estimating Cloud Cover: A Simulation

- Install the instrument shelter which is required for taking air temperature measurements.
- Check the calibrations of your instruments (thermometers and barometer or altimeter).
- Have students define their Atmosphere Study Site and submit site definition data to GLOBE.
- Install your rain gauge and barometer or altimeter and plan out measurement logistics (such as where will required instruments and materials stay, timing and time requirements, etc.).
- Choose which *Atmosphere Data Sheets* your students will use and copy them.
- Copy the Field Guides for the protocols your students will follow.
- Teach students how to take the measurements following the *Field Guides*, record their readings on the *Data Sheet(s)*, and report data to GLOBE.
- Transfer to the students as much responsibility as practical for taking measurements and reporting data.
- Have students look at their data and comparable data from other schools.
- Engage students in inquiry and help middle and secondary students conduct student research projects using the *Looking at the Data* sections of the protocols.

Table of Contents

Introduction

Why Investigate the Atmosphere?	Introduction 2
The Big Picture	Introduction 3
GLOBE Measurements	Introduction 4
Getting Started	Introduction 10

Protocols

Instrument Construction, Site Selection, and Set-Up

Cloud Protocols

Aerosols Protocol

Water Vapor Protocol

Relative Humidity Protocol

Precipitation Protocols

Digital Multi-Day Max/Min/Current Air and Soil Temperature Protocol

Maximum, Minimum, and Current Air Temperature Protocol

Surface Temperature Protocol

Ozone Protocol

Optional Automated Weather Station Protocols*

Optional Barometric Pressure Protocol*

Optional Automated Soil and Air Temperature Monitoring Protocol*

Optional AWS Weathernet Protocol*

Learning Activities

Observing, Describing, and Identifying Clouds

Estimating Cloud Cover

Cloud Watch

Observing Visibility and Sky Color

Making a Sundial

Calculating Relative Air Mass

Studying the Instrument Shelter*

Building a Thermometer*

Constructing a Model of Parts Per Billion Surface Ozone in the Air*

Making a Contour Map*

Draw Your Own Data Visualization*

Learning to Use Data Visualizations:

An Example with Elevation and Temperature*

^{*} See the full e-guide version of the Teacher's Guide available on the GLOBE Web site and CD-ROM.

